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Based on findings from the National Assessment for Educational Progress (1996-2009), the pattern of science achievement by U.S. students shows a decreasing degree of proficiency from elementary to secondary grades that has remained relatively unchanged, much in the same fashion as that of the White-Black achievement gap (Grigg et al., 2006; Lutkus et al., 2006; USDOE 2001, 2005). Parallel trends in reading comprehension (NCES, 2009) are important to note also because meaningful content-area learning from text has continued to be a significant barrier to both science learning and reading comprehension (e.g., AFT, 1997; Braun et al., 2009; Donahue et al., 1999; Feldman, 2000; Snow et al., 2002), particularly for school-dependent, low socioeconomic status (SES) students (see Gamse et al., 2008; Kemple, et al., 2008; James-Burdumy et al., 2006; NCES, 2009). International assessments reflect similar trends in science and reading achievement (Schmidt et al, 1999, 2001; Stephens & Coleman, 2007). 


In effect, present evidence-based reform efforts in science education (see Vitale et al., 2010) and content-area reading comprehension (see Shanahan, 2010) have contributed minimally to improving student achievement outcomes. And, even with the present status of reform, neither the fields of science education nor reading has pursued interdisciplinary research emphasizing cognitive science principles (see Duschl et al., 2007; Romance and Vitale, in press) that have the potential to reverse present achievement trends. More specifically, reform efforts have failed to address the ineffective operational dynamics of most K-5 schools, including: (a) curricular policies resulting in a serious reduction in time allocated for K-5 science (Dillon, 2006; Jones et al., 1999; McMurrer, 2008), (b) curricular policies focusing on basal (narrative) reading rather than emphasizing content-area reading comprehension, especially at the intermediate grades 3-5 (Chall & Jacobs, 2003; Guthrie et al., 2002; Pearson et al., 2010; van den Broek, 2010), (c) the adoption of conceptually weak science standards and curriculum (e.g., AFT, Petrilli, et al., 2006 [Thomas B. Fordham Institute]; Schmidt et al., 1999, 2001; Wilson & Bertenthal, 2006), and (d) the lack of factoring in the expanding evidentiary base that explicates the mutual benefits associated with the linking of science and literacy achievement outcomes (Duke, 2000a, 2000b, 2010; Guthrie et al., 2002; Guthrie, et al., 2004a, 2004b; Guthrie & Ozgungor, 2002; Guthrie, Wigfield, & Perencevich, 2004; Heller & Greenleaf, 2007; Klentschy 2003, 2006; Klentschy & Molina-De La Torre, 2004; Norris & Phillips, 2003; Romance & Vitale, 1992, 2001, 2010; Snow, 2002; Yore et al., 2004). 


With the preceding in mind, approaching these longstanding educational issues through the application of consensus cognitive science research and instructional systems development principles has the potential to accelerate the rate of student learning in both science and reading comprehension in a manner that also has systemic implications for K-5 curricular policy. _____________________________________________________________
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Consensus Interdisciplinary Research Perspectives about Meaningful Learning
 in Science
Current interdisciplinary research related to meaningful learning summarized by Bransford et al. (2000) provides a foundation as to how conceptual understanding in content domains such as science establishes both the prior knowledge and knowledge-structures necessary to support future learning as a core element in literacy development (e.g., reading comprehension as a form of understanding, coherent writing). Bransford et al summarized research studies of experts and expertise as a unifying concept for meaningful learning. Because the disciplinary structure of science knowledge is highly coherent, cumulative in-depth instruction in science provides a learning environment well-suited for the development of such understanding. As such, coherent curricular structures (e.g., Duschl et al., 2007; Lehrer et al., 2004; Smith et al., 2004, 2006) can readily incorporate elements associated with the cumulative development of curricular expertise by students. In turn, with the active development of such in-depth conceptual understanding serving as a curricular foundation (e.g., Carnine, 1991; Glaser, 1984; Kintsch, 1998; Vitale & Romance, 2000), the use of existing knowledge in the acquisition and communication of new knowledge provides the basis for engendering meaningful learning outcomes in science as well as scientific literacy and content-area reading comprehension. 


Science Learning and Comprehension
Comprehension of printed materials (e.g., texts, science trade books, leveled readers) requires students to link relevant prior knowledge to their construction of a coherent mental representation that reflects the intended meaning of the text (Kintsch, 1998; van den Broek, 2010). If learner prior knowledge is organized coherently around core concept relationships, there is a greater likelihood for gaining understanding. If prior knowledge is not strong, then understanding becomes more dependent on the logical coherence of the text (or any other learning experience). Because the domains of science knowledge are well-structured, cumulative in-depth instruction in science provides a learning environment that is well-suited for the development of understanding as expertise. 

In developing cumulative science knowledge, students are able to (a) link together different events they observe, (b) make predictions about the occurrence of events (or manipulate conditions to produce outcomes), and (c) make meaningful interpretations of events that occur, all of which are key elements of meaningful comprehension (see Vitale & Romance, 2007). In turn, with the active development of such in-depth conceptual understanding in science serving as a foundation, the use of prior knowledge in the comprehension of new learning tasks and in the communication of what knowledge has been learned provides a basis for key aspects of literacy development.

Representative Research Integrating Reading and Science in Grades K-5
At the K-3 level, researchers (Conezio & French, 2002; French, 2004; Smith, 2001) reported the feasibility of curricular approaches in which science experiences provide rich learning contexts for early childhood curriculum resulting in science learning and early literacy development. Related work has been reported by a variety of science and literacy researchers (e.g., Asoko, 2002; Duke, 2010; Gelman & Brenneman, 2004; Ginsberg & Golbeck, 2004; Newton, 2001; Rakow & Bell, 1998; Revelle et al., 2002; Sandall, 2003; Schmidt et al., 2001; Smith, 2001; Vitale & Romance, 2010).


In grades 3-5, the potential promise of building student prior knowledge for cumulative learning within science as a means for enhancing reading comprehension has been established repeatedly by the work of Guthrie and his colleagues (e.g., Guthrie et al., 2004; Guthrie & Ozgundor, 2002) with upper elementary students. In complementary work, Walsh (2003) noted in an analysis of basal reading series that the non-content oriented focus represented a lost opportunity for students to build the cumulative background knowledge necessary for comprehension. Other researchers (Armbruster & Osborn, 2001; Beane, 1995; Ellis, 2001; Hirsch, 1996, 2001; Palincsar & Magnusson, 2001; Pearson et al., 2010; Romance & Vitale, 2010; Schug & Cross, 1998; van den Broek, 2010; Yore, 2000) have presented findings that support interventions in which core curriculum content in science serves as a framework for building background knowledge and greater proficiency in the use of reading comprehension strategies. Research findings associated with the Klentschy model and the Science IDEAS model (described below) have repeatedly demonstrated that replacing traditional reading/language arts time with in-depth science instruction within which reading comprehension and writing are embedded have consistently resulted in higher achievement outcomes in both reading comprehension and science on norm-referenced tests (Klentschy, 2003, 2006; Romance & Vitale, 1992, 2001, 2006, 2008, 2010, 2011a, 2011b).

The Science IDEAS Instructional Model as a Cognitive-Science Approach for Integrating Reading within Science
 Science IDEAS is a cognitive-science-oriented model that integrates reading and writing within in-depth K-5 science instruction. In grades 3-5, Science IDEAS is implemented schoolwide in 1.5 to 2 hour daily instructional lessons which focus on science concepts. The model emphasizes students learning more about what is being learned in a cumulative fashion that builds upon core science concept relationships. The architecture and cognitive science principles of the model (see Figures 1-2-3-4) emphasize both the logic of the discipline and the role of knowledge in learning. Figures 5 (density) and 6 (convection) illustrate coherent curricular frameworks that would support the design of multi-day instructional lessons. Figure 7 (evaporation) shows how a curricular concept map serves as a framework for sequencing different Science IDEAS instructional elements (e.g., hands-on activities, reading, concept-mapping, journaling/writing) across multi-day lessons in accordance with a conceptually-coherent curricular framework consistent with recommendations in the literature (e.g., Donovan et al., 2003; Duschl et al., 2007; Romance & Vitale, 2001, 2009; Vitale & Romance, 2010). Figure 8 shows advanced teaching components for enhancing instruction that reflect cognitive science findings and instructional design principles (Vitale & Romance, 2006). This advanced framework also provides the means for an embedded approach to assessment (e.g., Pellegrino et al., 2001; Vitale, Romance, & Dolan, 2006). 
Focus of Study

The multiyear research findings documenting the effectiveness of the Science IDEAS model beginning in 1992 through the present are shown in Table 1. The findings reported in the present study are based on data not reported in earlier papers. Specifically, the findings reported here investigated whether the cross-sectional 2002-2007 findings across grades 3-8 reported by Romance and Vitale (2011) could be replicated in 2003-2008 across grades 3-7. The objective of this study was to investigate the multi-year effects of the Science IDEAS model on science and reading comprehension achievement measured by the ITBS on (a) grade 3-5 students receiving the model, and (b) associated transfer effects of the model on students in grades 6-7 who received the intervention in grades 3-5.


In doing so, an important goal of the study was to suggest implications for advancing school reform following cognitive science principles that would increase the instructional time for in-depth science instruction and emphasize core science concepts as a curricular framework leading to the acceleration of student achievement in both reading and science.

Method

Participants 


The study was conducted in a large (185,000 students), diverse (African American: 29%, Hispanic: 19%, Other: 5%, Free Lunch: 40%) urban school system in southeastern Florida. The study intervention (Science IDEAS) was implemented schoolwide in grades 3-5 in 12 elementary schools representative of the student diversity of the school system. Because of resource limitations, only 6 of the 12 elementary schools implementing the Science IDEAS model in grades 3-5 participated in this study. Six demographically-similar schools served as controls. In addition, former Science IDEAS grade 6-7 students and comparison students in middle schools in feeder relationships with the 12 experimental and control elementary also were tested to assess transfer effects of the intervention. Overall, the number of students consisted of a total of N= 3671 experimental and control students prior to elimination for missing science or reading data.

Intervention 

The Science IDEAS model (described previously) implemented in grades 3-5 served as the experimental intervention. The Science IDEAS model integrated reading and writing within in-depth science instruction across daily 1.5 to 2 hours instructional lessons which focused on science concepts along with additional ½ hour daily instruction in literature. The comparison students received the district-adopted basal reading/language arts program (usually 1.5 hours daily) as well as ½ hour of daily instruction using the district-adopted science curriculum.

Instruments 

The nationally-normed Iowa Tests of Basic Skills (ITBS) Reading Comprehension and Science subtests served as measures of student learning. These were administered to participating students in grades 3-7 by classroom teachers under supervision of the researchers. Fidelity of implementation was monitored by researchers on a regular basis throughout the school year following researcher-developed observational protocols. 

Research Design

The participating six Science IDEAS schools were selected randomly from the 12 schools implementing the model, with the constraint that they had implemented the model over the 5-year period ending with the 2007-2008 school year that allowed 2003-2004 grade 3 students to reach grade 7 in 2008. In the study design, middle school students were linked back to their grade 5 elementary schools, in effect creating a grade 3-7 elementary school for data analysis. The overall cross-sectional design was a 2 x 5 factorial (Treatment, Grade), with two outcome measures (ITBS Reading, ITBS Science). Student demographic characteristics (Minority vs. non-Minority status, Gender, and Title 1 eligibility) served as student covariates. Analysis was conducted using HLM Version 6.08 (Raudenbush & Byrk, 2001) with students designated as level 1 and teachers as level 2. Treatment and grade were coded at level 2. 

Results


Clinical Assessment of Implementation Fidelity

Monitoring of implementation fidelity for the six participating schools showed that between 82-95 percent of grade 3-5 Science IDEAS teachers implemented the model effectively (with fidelity).
ITBS Student Performance Outcomes

Tables 2 and 3 summarize the HLM analysis results. As Tables 2 and 3 show, the same  pattern of significant findings was obtained for both ITBS Science and ITBS Reading. For both outcome measures, the Science IDEAS model resulted in higher achievement (+1.30 GE for science, +.71 GE for reading). For both science and reading, grade level and non-minority status (White vs. non-White) were positively related to achievement while eligibility for Title 1 and gender (Male vs. Female) were negatively correlated with achievement. 

In addition to fitting main effects in the HLM model, subsequent analyses explored a possible Level 2 interaction between Grade and Treatment and possible cross-level interactions between the Level 2 (Treatment, Grade) and Level 1 (non-minority, sex, Title 1 eligibility) variables used as covariates for science and reading achievement. The results of these analyses revealed only a cross-level interaction between Treatment and Title 1 eligibility for ITBS Science and for ITBS Reading. As Table 2 shows, not only did Title 1 eligibility result in a consistent lowered prediction of science (-.09 GE) and reading (-.10 GE) achievement; but also that these lowered predictions were magnified by -.08 GE in science and -.05 GE in reading for Title 1 students not receiving the Science IDEAS intervention. 

Discussion
The multi-year findings reported here replicated previous research (Romance & Vitale, 2011a, 2011b) that demonstrated the effectiveness of the cognitive-science-oriented Science IDEAS model for improving student science achievement in grades 3-5 directly and in a manner in which the effects also transferred to grades 6-7. In addition, through content-area learning in science in which reading/language arts was integrated, the Science IDEAS model also had a positive effect on student reading comprehension achievement in grades 3-5 and, through transfer, to grades 6-7 as well. 
In conjunction with related research (e.g., Duke, 2000a, 2000b, 2010; Guthrie et al., 2002; Guthrie, et al., 2004a, 2004b; Guthrie & Ozgungor, 2002; Guthrie, Wigfield, & Perencevich, 2004; Heller & Greenleaf, 2007; Klentschy 2003, 2006; Klentschy & Molina-De La Torre, 2004; Norris & Phillips, 2003; Romance & Vitale, 1992, 2001, 2010; Snow, 2002; Yore et al., 2004), results of the present study which replicated earlier cross-sectional research findings (Romance & Vitale, 2011a, 2011b) are suggestive of the potential benefits of applying cognitive science principles as a means for reversing present school K-5 curricular policy that allocates extensive time to reading rather than science instruction (see Jones et al., 1999). However, in using the  goal of meeting accountability-based student reading achievement requirements as justification, such K-5 curricular policy has resulted in the allocation of K-5 student instructional time to non-content-oriented basal reading programs rather than to integrated science instruction organized around a core concept curricular framework. Implications of this study and related work (see also Klentschy, 2003; Romance & Vitale, 2009) are that a curricular approach integrating literacy within in-depth science instruction has the benefit of increasing student academic achievement in science and reading comprehension both directly and on a transfer basis in a far more effective manner than just traditional reading/language arts programs. With regard to present K-5 curricular policy, an important implication of the present study and related research is  providing a rationale for increasing the amount of time science is taught in K-5 schools.
From a cognitive science/interdisciplinary research perspective, the adoption of knowledge-focused, content-oriented instructional models by schools in conjunction with a curricular perspective that in-depth, content-area learning is necessary for reading comprehension development has implications for systemically changing present school approaches to curriculum, instruction, and educational reform. That is, pursuing implications which amplify the importance of in-depth science instruction would necessarily change the present direction of school reform. However, at the same time, based on the consensus research findings in this paper, such a re-direction of school reform initiatives would be expected to yield a greater degree of systemic improvement in the academic performance of all students in both science and reading comprehension. Although working toward the implementation of such research-based implications would be a significant challenge, accepting such a challenge in the face of the present lack of substantial progress in education reform, provides schools with a far better alternative than simply continuing to pursue “more of the same” (see Walsh, 2003). In this sense, as a paradigmatically different approach for embedding reading comprehension and writing within in-depth science instruction, Science IDEAS offers school practitioners a research-validated alternative for increasing student achievement expectations that, potentially, could positively impact different aspects of student learning across the K-12 grade range. 

With the preceding in mind, the rationale underlying the argument for increasing time for science instruction using cognitive-science-based instructional principles is twofold. First, increased time for science instruction in grades K-5 would provide a content-rich foundation of prior knowledge which middle school teachers could use to enhance their science teaching and, in turn, to better prepare students in grades 6-8 for subsequent success in high school science. And, second, increasing instructional time allocated to K-5 science would also provide the means for advancing student achievement in reading comprehension across the K-8 grade range. In contrast, the current reform objective to improve reading comprehension achievement by increasing time for basal reading /language arts while reducing time for science and other content-oriented instruction has been consistently unsuccessful as evidenced by multiple NAEP assessments of reading (e.g., NCES, 2009). More specifically, lack of content-area instruction and content-area reading in grades K-5 may well be a major reason for the failure of educational reform at the secondary levels in U.S. schools (e.g., Hirsch, 1996; Walsh, 2003, Snow, 2002).
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Table 1. Major Multi-Year Research Findings Integrating Science and Literacy: Science IDEAS Model

---------------------------------------------------------------------------------------------------------------------------------------------------------

Year(s)
Grade(s) 
Duration
N a
Summary of Findings b c

----------------------------------------------------------------------------------------------------------------------------------------------------------

Early grade 3-5 Studies

1992
4
1 year
3 classes
Significant effects on MAT Science (+.93 GE adj. mean diff.) and ITBS 





Reading (+.33 adj. mean diff.)


1993
4
1 year
3 classes
(Replication) Significant effects on MAT Science (.+1.5 GE adj. mean 





diff.) and ITBS Reading (+.41 adj. mean diff.)

1996
4-5
5 months
15 classes
(Primarily at-risk students)  Grade 5- Significant effects on MAT Science 





(+2.3 GE adj. mean diff.) and ITBS Reading (+.51 adj. mean diff.)





[Grade 4 effects were not significant in the 5-month study]

1998
4-5
1 year
45 classes
(Regular and at-risk students)  Significant effects on MAT Science 





(+1.11 GE adj. mean diff.) and ITBS Reading (+.37 adj. mean diff.)

Recent Grade 3-8 Longitudinal Studies d

2002-2007
3-5
multi-year
12 schools
(Study obtained data from 6 of 12 project schools. Schoolwide 





implementations in grades 3-5, cross-sectional longitudinal 





study with transfer effects assessed to grades 6-8). Significant main 





effects were obtained on ITBS Science (.+.38 GE adj. mean diff.) and 





ITBS Reading (+ .32 GE adj. mean diff.) across grades 3-8, with 





significant transfer effects from grades 3-5 to grades 6-8.

2003-2008
3-5
multi-year
12 schools
(Present replication study reported in this paper obtained data from 6 of 





12 project schools. Schoolwide implementations in grades 3-5, cross-





sectional longitudinal study with transfer effects assessed to grades 6-7). 





Significant main effects were obtained on ITBS Science (+1.30 GE adj. 





mean diff.) and ITBS Reading (+ .71 GE adj. mean diff.) across grades 3-





7, with significant transfer effects from grades 3-5 to grades 6-8. 





Significant cross-level interaction was obtained between Treatment and 





Title-1 Eligibility for ITBS Science (see text for details).

2002-2008
3-5
multi-year
12 schools
Multi-year cohort studies comparing cumulative achievement growth of 




individual Science IDEAS and Comparison students from grades 3-8. 




(Presently in progress.)
Recent Grade K-2 Studies

2005
1-2
8 weeks
2 schools
(Schoolwide implementations, K students not tested) Significant effect 





on ITBS Reading (+.42. GE adj. mean diff.); significant grade by 





treatment interaction in ITBS Science, with significant effects in grade 2 





(+.72 GE adj. mean diff.), but not in grade 1

 2007
1-2
1 year
2 schools
(Schoolwide implementations, K students not tested) Significant effects 


 



on ITBS Science (+.16. GE adj. mean diff.) and on ITBS Reading 






(+.58. GE adj. mean diff.) 

----------------------------------------------------------------------------------------------------------------------------------------------------------

a 
Comparable number of demographically-comparable classes/schools used as controls

b 
Research studies were reported in articles/papers Romance & Vitale (1992, 2001, 2006, 2008, 2009, 2011a, 2011b), Vitale & Romance (2007a, 2007b, 2010a, 2010b), and Vitale et al. (2004).

c 
For consistency in later studies we report non-standardized HLM coefficients (coded as 1 = Experimental, 0 = Controls) as adjusted means. 

d 
NSF/IERI Scale Up Project: 2002-2008 (REC 220853).

Table 2. HLM Analysis of Intervention by Grade level for ITBS GE Science

 -----------------------------------------------------------------------------------------------------------

                    
Standard       
Approx.

 Fixed Effect    
Coefficient
Error
T-ratio
df
P-value

 -----------------------------------------------------------------------------------------------------------

 For  INTRCPT1, B0

   INTRCPT2, G00    
1.94 
0.29     
6.59
185
0.000

   GRADE, G01   
0.79
0.06
14.34
185
0.000

   TRT-C0E1, G02     
1.30  
0.22
 5.88
185 
0.000

 For   NON-MINORITY slope, B1

     INTRCPT2, G10      
0.49
0.10   
4.99 
 2927 
0.000

 For SEXM1_F0 slope, B2

    INTRCPT2, G20     
  -0.18 
0.08
-2.35
2927  
0.020
 For TITLE1_1 slope, B3

    INTRCPT2, G30     
 -0.09 
0.02
 -4.54
 2927 
0.000

    TRT-C0E1, G31     
-0.08
0.03
-2.61
2927 
0.010
-----------------------------------------------------------------------------------------------------------

Final estimation of variance components:

 -----------------------------------------------------------------------------------------------------------

 Random Effect      
Standard    Variance   
df  
Chi-square 
P-value

            
Deviation   Component

 -----------------------------------------------------------------------------------------------------------

 INTRCPT1, 
U0    
1.11    
1.24  
185  
977.47  
0.000

 Level-1,   
 R    
2.20    
4.82
-----------------------------------------------------------------------------------------------------------

Note- Robust standard errors used for tests
Table 3. HLM Analysis of Intervention by Grade level for ITBS GE Reading Comprehension

 -----------------------------------------------------------------------------------------------------------

                    
Standard
  Approx.

 Fixed Effect 
Coefficient
Error
T-ratio
df
P-value

-----------------------------------------------------------------------------------------------------------

For  INTRCPT1, B0

   INTRCPT2, G00    
2.05 
0.26   
7.77
213
0.000

   GRADE, G01   
0.78
0.05
14.40
213
0.000

   TRT-C0E1, G02     
0.71
0.18
 4.04
213 
0.000
 For NON-MINORITY slope, B1

    INTRCPT2, G10      
.40
0.08   
5.25 
3664 
0.000

 For SEXM1_F0 slope, B2

    INTRCPT2, G20     
  -0.35 
0.06
 -5.45  
 3664  
0.000

 For TITLE1_1 slope, B3

   INTRCPT2, G30     
 -0.10 
0.01
 -6.95
 3664 
0.000
   C0E1, G31
-0.05
0.02
-2.13
3664
0.033

-----------------------------------------------------------------------------------------------------------

Final estimation of variance components:

-----------------------------------------------------------------------------------------------------------

 Random Effect      
Standard    Variance   
df  
Chi-square 
P-value

            
Deviation   Component

 -----------------------------------------------------------------------------------------------------------

 INTRCPT1, 
U0    
.89    
.80  
213  
978.83  
0.000

 Level-1,   
 R    
2.02    
4.01

 -----------------------------------------------------------------------------------------------------------

Note- Robust standard errors used for tests
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Figure 1. Knowledge-based instruction (KBI) represented as an instructional architecture in which

core concepts to be taught and instructional activities are based on a curricular framework representing the logic of the discipline. 
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Figure 2. Knowledge-based instruction (KBI) represented as an instructional process in which

core concepts to be taught provide a logical context for all aspects of instruction. 
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Figure 3. Major cognitive science principles of instruction incorporated in a

knowledge-based instruction model. 
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Figure 4. Initial knowledge-based instruction architecture of the Science IDEAS model. Propositional concept mapping was emphasized as a tool for the design of instruction incorporating the Science IDEAS instructional elements (see text for details). 
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Figure 5. Example of a curricular concept map on the concept of density appropriate for planning instruction across grades 2-5.
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Figure 6. Example of a curricular concept map constructed from Core Concepts in Earth Science (Carnine et al., 1982 ) appropriate for planning instruction across grades 3-8.
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Figure 7. Simplified illustration of a curricular concept map used as a guide by grade 4 Science IDEAS teachers in planning a sequence of knowledge-based instructional activities for a multi-day lesson using Science IDEAS elements.


Figure 8. Specific advanced instructional strategies for use by grade 3-5 Science IDEAS teachers as enhancements to multi-day lessons using Science IDEAS elements. Strategies are also appropriate for adoption and use on a modular basis by content-area teachers at the secondary level. 

Michael Vitale, Nancy Romance Science IDEAS Project, March 2007.
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